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Abstract
We present an extension of the Beeby and Hayes method for the calculation of
electronic states of a binary disordered alloy in the form AxB1−x on a square
lattice. The calculation demonstrates the application of the disordered system
approach to the substitutionally disordered square lattice. The densities of states
of the binary alloy are calculated for different cases in the tight-binding limit.

1. Introduction

Electronic states of substitutional random alloys have become an active research topic
over the past few decades, and they are still a challenging problem to study using
alternative methods based on different approaches. The structure of these systems possessing
the lack of translational symmetry is the main difficulty and obstacle for developing a
general and quantitative method. Therefore, various methods, for example, coherent
potential approximation (CPA) [1–11], recursion [12–14] and the augmented-space recursion
method [15], have been proposed and used for investigating the electronic properties of these
systems. Among these, the Beeby and Hayes method [16] is one which has been applied
to both structural disordered solids and substitutional disordered alloys in the tight-binding
approximation for many years. But the method has not fully been explored because it has been
applied to a limited number of problems.

In this work, an application of the Beeby and Hayes method is performed on a two-
dimensional artificial binary alloy model. The goal is to demonstrate the application of
the disordered system approach to substitutionally disordered alloys. This argument will be
described on a 50–50 AB binary alloy distributed with a certain order on a square lattice before
it is applied to a real system, and for which some numerical examples for the density of states
(DOS) are carried out. We should emphasize that this paper will look only at the case where
the bandwidth is much greater than the spread of binding energies. Before the calculation,
however, the resulting dynamic matrix associated with evaluating the DOS is reduced to a
simple computational form, which was thought of as a future study in one of our previous
papers [17]. Moreover, we consider a different case for the two-dimensional (2D) system by
taking two kinds of the hopping integral, hw (weak) and hs (strong), corresponding to long and
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short bonds, which is of interest for the application of the approach to 2D quasicrystals like a
Fibonacci lattice [18].

The remainder of the paper is divided into four sections. In section 2 the formal relations
of the method and the way that it is treated for a binary alloy are briefly presented. In section 3
the model system and the structural parameters are described, and the application of the method
leading to the dynamic matrix is illustrated. In section 4 some numerical calculations are carried
out. The paper ends with a short discussion in the last section.

2. The Beeby and Hayes method and binary alloy model

The technique used to evaluate the electronic states of disordered systems is based on multiple-
scattering theory and the calculated function is the total scattering function, the T -matrix,
discussed in previous studies in [16, 17, 19] and given by

T =
∑

i

ti +
∑

j ( �=i)

ti G
i j
0 t j +

∑

j ( �=i),
k( �= j)

ti G
i j
0 t j G

jk
0 tk + · · · + . (1)

Here ti is the single-site matrix describing electron scattering from atom i and G0 is the free
electron propagator between two atoms. The elements of each t and G0 are matrices labelled
by angular momentum indices and both are functions of momentum (k) and of energy (E).
Each factor G0 in the expansion for s-wave scattering contributes a factor

G0 = −2π K0(µR) exp(ikRi j) (2)

where µ = (−E)1/2 is real for E < 0, R is the distance between two atoms and K0 is a
modified Bessel function associated with the hopping term. Once the T -matrix is defined in
terms of the structural parameters of the system the DOS can be evaluated from the imaginary
part, which at negative energy arises only where the scattering series diverges. Hence, the
well-known physical quantity of interest related to the imaginary part is the spectral function,
ρ(k, E), given by

ρ(k, E) = − 1

�

1

(E − k2)2
Im〈T (k)〉 (3)

where, as seen, the main task is to determine the imaginary part of the T -function, which is

Im〈T (k)〉 = 2π

〈{∑

i

ti(k, k) +
1

2π

∑

i �= j

ti (k,
√

E)Gi j(
√

E, k)t j (
√

E, k) +
1

(2π)2

×
∑

i �= j
l( �= j)

ti (k,
√

E)Gi j(
√

E, k)t j (
√

E,
√

E)Gil(
√

E, k)tl(
√

E, k) + · · ·
}〉

.

(4)

Here the subscripts refer to the atom type and for simplicity the scattering is assumed to be
only s-wave scattering so that t-matrices can be replaced by energy-dependentscalar functions.
The initial approximations made to the potential are that it is in the muffin-tin form of non-
overlapping spheres.

We can now use the properties of t-matrices derived in detail in [19], i.e. ti(k,
√

E) =
si (k)

si (
√

E)
ti (

√
E,

√
E) = ti (

√
E, k) and Im ti (k, k) = s2

i (k)

si (
√

E)
Re ti (

√
E,

√
E). The series in

equation (4) can then be written
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Im〈T (k)〉 =
〈
2π

{∑

i

s2
i (k)

si (
√

E)
Re ti (

√
E,

√
E) + Im

∑

il j

si (k)

si (
√

E)
ti(

√
E,

√
E).

×
[

1 − 1

2π
Gt (

√
E,

√
E)

]−1 1

2π
Gl j t j (

√
E,

√
E)

si (k)

si(
√

E)

}〉
(5)

which can be reduced to the form

Im〈T (k)〉 = 2π

〈∑

i

si (k)

si(
√

E)
Im Ti(k)

〉
(6)

where

Ti (k) = ti (
√

E,
√

E)
si (k)

si (
√

E)
+ ti (

√
E,

√
E)

∑

j ( �=i)

Gi j(
√

E, k)

2π
Tj(k). (7)

Hence we shall seek a solution of the equation

∑

j

[
t−1
i (

√
E,

√
E)δi j −

∑

j ( �=i)

Gi j(
√

E, k)

2π
Pi j

]
· Tj = si (k)

si (
√

E)
. (8)

Now if a binary alloy with concentrations cA and cB of A and B, respectively, is considered,
the function Ti (k) in equation (7) can be supposed to depend for each pattern only
on the distribution in terms of the near-neighbourhood atoms. The sum in (6) is then
2π

∑
A

si (k)

si (
√

E)
cA Im TA. Here cA is the total concentration of neighbourhood A and its central

atom is of type i . Here the sum over neighbours is made of a sum over all bonds from a
particular atom and over all possible patterns which can occur at the end of those bonds.
The sum over all the pattern probabilities at the end of a particular bond must be unity,
and the sum over bonds then gives simply the number of bonds. PAB is the probability of
neighbourhood B neighbouring A. Hence the number of AB pairs is given by cA PAB = cB PBA.
From expression (8) it is better to solve for

√
cATA which satisfies

∑

B

[
t−1
i δAB − G AB

2π
PAB

√
cA/cB

]√
cBTB = √

cA
si (k)

si(
√

E)
(9)

in which (
√

cA/cB)PAB = (
√

cB/cA)PBA is symmetrical and the atom at the centre of the
pattern A is of type i . Moreover, in defining the T -function for the patterns each TA will be
taken to be a function of the axis directions and exp(ik·R) expansion in (2) gives an exponential
factor such as exp[iν(θR − θk)], as will be illustrated on the model system below.

3. The model system and the application of method

In disordered systems it has been very common to study the effects of some physical parameters
(e.g. a defect or disorder, SRO, etc) on a model system which may give very illustrative
physical results for a theoretical technique before it is applied to a real material. It should
however be emphasized that such model systems might correspond poorly at best to realistic
materials which might have been studied intensively by various approaches for different
purposes [15, 21–25]. Therefore, it is still of great interest for the simplicity of comparison
and exact results for alternative theoretical studies.

In this sense we first consider a binary alloy described in tight-binding form, and atoms of
two different kinds, say A and B, distributed over the sites of a 2D square perfect lattice with
concentration c and 1 − c, respectively. If each atom in the alloy has n neighbours with these
occupation probabilities, then the various probabilities for the total distribution can be derived
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Figure 1. The diagram of possible distribution of AcB1−c binary alloy on square lattice.

from the expansion of (c + (1 − c))n . Considering this distribution a 2D random system with
concentrations of A and B of c and (1 − c), respectively, may have 12 possible distribution
patterns assigned as A1–A6 and B1–B6 as given in figure 1. The structural parameters
associated with each pattern of the system, such as the total frequency of each pattern and the
probability distribution of neighbourhoods, can be determined using the expansion procedure.
The probabilities of the patterns in figure 1 are PA1 = c5, PA2 = 4c4(1−c), PA3 = 4c3(1−c)2,
PA4 = 2c3(1 − c)2, PA5 = 4c2(1 − c)3, PA6 = c(1 − c)4, PB1 = (1 − c)5, PB1 = 4c(1 − c)4,
PB1 = 4c2(1 − c)3, PB1 = 2c2(1 − c)3, PB1 = 4c3(1 − c)2 and PB1 = c4(1 − c), respectively.
As can be seen, the sum equals unity. In addition, it is straightforward to calculate the available
number of bonds, which is associated with the weighting along the bonds. Hence, consider
movement along AA bonds, NAA = 4PA1 + 3PA2 + 2PA3 + 2PA4 + PA5 = 4c2 and similarly
along BB bonds, NBB = 4(1 − c)2 and AB or BA bonds, NAB = NBA = 4c(1 − c). We must
note that there may be various possible distributions of such systems, but we have considered
only the distribution illustrated in figure 1.

The next argument is to define the T-functions corresponding to the structural environment
of each pattern and leading to the dynamic matrix. To do this, a coordinate axis is defined for
each of the twelve individual patterns in figure 1 while every neighbouring pattern has a fixed
orientation relative to the axis defined. The axis is shown by θb fitted on a symmetric bond
as seen in the figure, and 12 different T -functions, each of which represents a pattern in the
figure in terms of the structural parameters of the neighbouring atoms. To avoid confusion
the T -function for each pattern will be denoted F with a environment of the pattern label (for
more detail see [17]). Then, if we write down F only for the pattern A1 in a open form as a
function of the rotation of its axis relative to the absolute axis, it can be defined as
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FA1(θb) = 1 + t0[G(θb)PAA F A(θb) + G(θb + π/2)PAA F A(θb − π/2)

+ G(θb − π)PAA F A(θb − π) + G(θb − 3π/2)PAA F A(θb − 3π/2)]. (10)

Here the propagator G given in equation (2) is defined only in terms of angular functions in
the last equation, while

√
E and k in this function are suppressed for convenience, and Pαβ is

the probability of finding a neighbouring β of pattern α. The probability of each pattern can
be calculated from the distribution of figure 1. If we consider the diagrams A and B joining
along a particular bond, the propagator G has the form

∑
ν K0(µR)(−i)ν Jν(k R)e−iνθR δν,m−m′ .

Here θR is the direction of the vector between the two atoms. The Fα for the other patterns
can be written in the same way as equation (10). The general form for the scattering function
describing each pattern environment can then be written as

Fα(θ) = 1 +
∑

β

t0 PαβGαβFβ(θ ± γ ) (11)

where α and β denote the patterns and γ the allowed orientations to the symmetric axis. If
both sides of this equation are Fourier transformed to polar angles, this gives

Fα
m = 1δm,0 +

∑

β

t0 Pαβ K0(µR)
∑

m′
(−)m(−i)m−m′

Jν(k R)
αβ(m, θ)Fβ

m′ . (12)

Here Fα and Fβ are vectors depending on the integers m and m ′, 0,±1,±2, . . . , and 
 is the
structural function involving the terms related to the rotational angles. Thus the coefficient of
F satisfies a matrix equation which can be written in compact form as

F = e + t0MF (13)

where M is the structural matrix of the system, and is due to the 12 different patterns, F is a
block vector with blocks labelled by pattern type and elements of the blocks labelled by m. e
is a block vector consisting of the identity matrix if m = 0, and zero elsewhere. In the present
case the matrix M is a complex and non-symmetric block matrix, but it can be transformed to
a real symmetric matrix as was done and discussed in detail in previous studies [17, 19, 20].
As a result, following the same way of symmetrization, equation (13) takes the form

t−1
0 Λ = t−1

0 e′ + M′Λ (14)

where e′ is
√

pαi ·em
αiδm,0, Λαi

m = im
√

pαi ·Fαi
m and pαi is the concentration of each pattern. The

matrix M′ then becomes a symmetric block matrix. We note here that though the symmetric
matrix makes the solution one degree easier we found that the convergence of the DOS takes
a very long computer time. To avoid this cumbersome solution, we introduce an alternative
simple solution by writing the matrix in an open form below. Due to the rotational symmetry
the bond factors are unchanged as θi is rotated through 2π , which is equivalent to shifting the
integers, m and m ′, by γ = 2π /(interbond angle = π/4). We may form block matrices of side
γ times the number of patterns in which all the blocks on a particular diagonal are identical.
If the elements of a blocked eigenvector are �i with eigenvalue λi , shifting the eigenvector by
a block also give an eigenvalue. This yields the equation




. . . . . .

. MT
3 MT

2 M1 M2 M3 .

MT
3 MT

2 M1 M2 M3 .

MT
3 MT

2 M1 M2 M3 .

. . . . . . . . .








.

.

.

Λ−1

Λ0

Λ1

.

.

.





= λ





.

.

.

Λ−1

Λ0

Λ1

.

.

.





(15)
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where M1, M2, M3 . . . are 48 × 48 block matrices given in explicit form as

M1 =




J0m00 J1m01 J2m02 J3m03

J1mT
01 J0m11 J1m01 J2m02

J2mT
02 J1mT

01 J0m22 J1m01

J3mT
03 J2mT

02 J1mT
01 J0m33


 (16a)

M2 =





J4m00 J5m01 J6m02 J7m03

J5mT
01 J4m11 J5m01 J6m02

J6mT
02 J5mT

01 J4m22 J5m01

J7mT
03 J6mT

02 J5mT
01 J4m33



 (16b)

and so on.
Note that each m is a 12 × 12 block of the matrix Mi . Here, since the system is four-fold

each mi j repeats itself on each Mi . As can be appreciated, it is very hard to truncate the matrix
for solving the finite problem exactly. But in the infinite problem the situation is better. For a
given eigenvalue λ, the eigenvectors �i satisfy the same equation except that they differ by a
phase factor. In this case, each row of the eigenvector equation can be written

M1�0 +
(
M2 eiα + MT

2 e−iα)
�0 +

(
M3ei2α + MT

3 e−i2α
)
�0

+
(
MN ei(N−1)α + MT

N e−i(N−1)α
)
�0 = λ�0 (17)

which is a 48 × 48 Hermitian matrix equation. The normalization can be done as �∗
0(α =

2π j/N)�0(α = 2π j/N) = 1/N , ( j = 0, 1, N − 1). Thus equation (17) can be reduced to
the form

[
M1 + (M2eiα + MT

2 e−iα) + · · ·]Λ0 = λΛ0 (18)

which has N sets of 48 eigenvectors and eigenvalues. The imaginary part is written as

Im Λ0 = − π

N
t−1
0

∑

i

∣∣∣∣
∑

j

√
pαβ�i j · e

∣∣∣∣
2

δ
(
t−1
0 − λi

)
(19)

and the spectral function related to the DOS is

ρ(k, E) = 1

�0

1

[E − k2]2

∑[
s0(k)

s0(iµ)

]2

· Im Λ0. (20)

4. Results

In this section, as a first calculation we shall calculate the DOS for the system having the
patterns as in figure 1 and distributed on a square lattice, on which the system is a 50–50
AB binary alloy and the structural parameters have already been calculated in section 3. For
this system if we consider one energy scale and only s-states, we then expect that the system
behaves like the well-known perfect square lattice in two dimensions. The second part of the
calculation is focused on the case of variable overlap integrals. We shall consider the binary
system as a 2D system having two different hopping integrals between site atoms on each
pattern and neighbouring atoms, for which the DOS will be calculated for the 50–50 binary
alloy. In one sense this is a kind of investigation of the structural effect for disordered alloys.
Note here that the system need no longer be a square lattice for this calculation.

Let us then represent by hi j the magnitude of the hopping integral between the central
atom on the patterns and neighbouring atoms along the bond, which is given by hi j =
W K0(µRi) [17], where Ri is the length of the bond and W is a parameter related to the
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band width. Following [16], t−1
0 in equation (14) is energy dependent and given to within

a constant approximately by (E − Eb)/W in the tight-binding approximation, which can be
combined with the appropriate factors in equation (2) to form what is effectively an overlap
integral. Here Eb is the bound-state energy of a single muffin-tin potential. We must note
that since the magnitude of the overlap integrals between neighbouring atoms is related to the
hopping term hi j , the second part of the calculation is focused on this term.

We note that the analytic form of the hopping term was approximated by the standard
representation of the hopping integrals in the tight-binding calculations such that the values of
the overlap integrals were first fixed and then substituted in the matrix equation in (18) as done
exactly in [17]. Then the spectral density function in (20) was evaluated using the eigenvalues
and eigenvectors of the matrix. The potential used in this calculation has been taken in the
form v(r) = λδ(r − α), for which values of s0(k) and s0(iµ) were derived in [20]. However,
it should be emphasized that the results do not depend on the potential in the extreme tight-
binding limit because the total number of states in the band equals one per atom. We shall take
appropriate values for atomic parameters such as the strength of the potential, as was done in
the previous calculations [17, 19]. For example, r = 0.5 (au) and the bond length between
two atomic potential centres R = 2.0 (au), for which the ground state energy E0 = −30 (au).
Thus the density of states, N(E), has been calculated from

N(E) = �0

4π2

∫

k
ρ(k, E) dk. (21)

Let us now calculate the first case, i.e. the system in figure 1, for which the structural
parameters have been given in section 3 and the concentrations of A and B atoms, cA and
cB, are taken equal. In order to approximate the system to a perfect square lattice, we take
EA = EB = E0 (E � h) so that one single common band is expected. Using these
conditions, evaluating the eigenvalues and the eigenvectors from equation (18), the DOS was
calculated through equations (19)–(21) and the result is given in figure 2(a). As expected,
the DOS is symmetric about the band centre E0 = 0.0, and has a Van Hove singularity
peak resembling approximately the DOS of the perfect square lattice, but the singularity is
not as sharp and smooth as expected for the perfect case or as calculated by Chakrabarti
and Mookerjee in [15]. This is due to the nature of the theoretical treatment based on the
structural disordered systems. In the next calculation of the same system the concentrations
of the composition in the system were taken as cA = 0.49 and cB = 0.51, and cA = 0.51 and
cB = 0.49, respectively, but leaving the other parameters the same. The results are presented
in figures 2(b) and (c). As can be seen, the symmetry is broken down, and on panel (b)
the weight has slightly shifted to the top of the band due to cB, while on panel (c) it has
shifted to the bottom of the band due to cA. From these results it can be emphasized that the
singularity was not removed since the approach to substitutionally disordered alloys treated
our system as a partially disordered alloy rather than a randomly disordered alloy, so that
the variation of the DOS was due to the concentration values. However, at this point if it is
possible to compare our treatment with the study done by Chakrabarti and Mookerjee using
the augmented-space recursion method (ASR) [15], in which the singularities appearing for
the ordered square lattice were removed as the disorder was defined in terms of two different
concentrations values (A = 49.5, B = 50.5 and A = 50.5, B = 49.5) for a perfectly disordered
lattice distributed randomly, but the two results were exactly the same for two concentration
values. In contrast, we have shown in panels (b) and (c) that the symmetry disappeared as
the concentrations were different. This demonstrates the sensitivity of the approach to the
compositional effects of the system. Obviously, although both the binding energies and the
hopping integrals are the same, the difference between (b) and (c) shows that the electron cares
about the site label and concentrations, which demonstrates how accurate the method is.
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Figure 2. The density of states (states/atom) for a partially disordered binary alloy with
concentration: (a) cA = cB = 0.5, (b) cA = 0.49, cB = 0.51, (c) cA = 0.51, cB = 0.49.

In the second part of the calculation, we assume that the system is no longer a perfect
square lattice, but a two-dimensional lattice having two different bonds of the binary alloy. In
other words we shall seek the DOS of the system for the case of variable integral overlaps. This
case may resemble Fibonacci lattices in two dimensions [18]. Then we consider two kinds of
hopping integral (or transfer matrix), hw (weak) and hs (strong), corresponding to long and
short bonds. First, the long bonds are taken between atoms A, and short bonds between atoms
B, and then we have assumed the inverse case, i.e. short bonds between atoms A and long bonds
between atoms B. In the first case, the hopping integrals are chosen as hBB (=hs) = E/0.326,
hAA (hw) = E and hAB = E/0.564, where E is the unit of energy and it defines the
overlap integral, fixing the energy scale. In the second case we have taken hAA (=hs) = E
and hBB (=hw) = E/3.13, and the hopping terms between atoms A and B, hAB = E/1.77
which are averaged over hs and hw. The numerical results are presented in terms of this unit.
Thus, using these values the calculations were carried out for the 50–50 binary system and
the results have been presented in figures 3(a) and (b). As seen in figure 3(a), one single band
appeared as expected and the Van Hove singularities at E0 = 0.0 have also vanished. The
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Figure 3. The density of states (states/atom) for a partially disordered binary alloy with cA =
cB = 0.5, and different hopping terms: (a) hAA = E , hBB = E/0.326 and hAB = E/0.564;
(b) hAA = E , hBB = E/3.13 and hAB = E/1.77.

structure shifted to the top of the band appearing at energy 2.0 (au) is due to the weight of
short bonds (strong interaction) coming from atoms B. On the other hand, in the case of (b) the
structure was shifted to the bottom of band with a single band at energy 2.0 (au) due to atoms
A giving strong interactions. Hence, these calculations demonstrated that the approach can be
used to calculate the DOS for systems having different hopping integrals and concentrations if
the bandwidth is much greater than the spread of binding energies. In one sense such systems
are also some kind of disordered system having different bond distances between atoms and
consisting of sublattices like the Fibonacci lattice in two dimensions [19, 26].

5. Discussion

With this paper we have demonstrated the application of a structurally disordered system
approach to substitutionally disordered alloys on a 2D 50–50 binary alloy. For these purposes,
some numerical calculations were performed on a 2D binary alloy for different concentration
values and the case |Ea−Eb| � different hopping terms. The approach used in this calculation
does not involve a single-site approximation or the solution of any self-consistent equation if
we compare with the CPA. At this point, however, one comment might be regarding the results
of Chakrabarti and Mookerjee in [15] if we make a comparison with the Beeby and Hayes
method. The two figures presented for different concentration of compositions (A = 49.5 and
B = 50.5, and A = 50.5 and B = 49.5) of complete disorder in [15] are symmetric and show
exactly the same structure, whereas we might expect that the symmetric case could slightly
be broken in completely disordered binary alloys depending on the composition ratio, but this
may not be true for structurally disordered systems.

In conclusion, the results showed sufficient confidence to look at the case where the
bandwidth is greater than the spread of binding energies for 2D binary disordered alloys. We
hope in a future publication to be able to demonstrate the application of the method to variable
binding energies. In addition, we have achieved a position of being able to apply this formalism
to systems such as Fibonacci lattices in two dimensions, which will also be the subject of a
future study.
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